A Leishmaniasis Vaccine Breakthrough: Are We Almost There?

Jude Uzonna, DVM, Ph.D.
Professor & Research Manitoba Chair,
Department of Immunology
University of Manitoba
Simple Cutaneous Leishmaniasis

- Caused by *Leishmania major, mexicana, tropica, etc*
- Normally self-healing
- DTH, T cell proliferation
- Low antibody responses
- Healing results in solid immunity
Diffuse cutaneous leishmaniasis

- No DTH response
- High Antibody response
- Chronic, resistant to drug treatment
Mucocutaneous leishmaniasis

- Very strong DTH
- Intense inflammatory response
- Chronic, resistant to drug treatment
- Very few parasites at inflammatory sites
Visceral leishmaniasis

- *Leishmania donovani*
- No DTH response
- Very high Ab response
- Impaired T cell proliferation in response to antigen
Leishmaniasis: A global problem

Epidemiology:
- 14 million active cases
- 2 million new cases yearly
- 340 million people at risk
- 88 countries, 5 continents
- Neglected Tropical Disease
- > 3500 cases of cutaneous Leishmaniasis among gulf veterans

Sources: WHO, CDC
Immunity to cutaneous Leishmaniasis (simplified)

- Resistance to *L. major* is mediated by IFN-γ-producing CD4+ Th1 cells
- IFN-γ activates macrophages leading to intracellular parasite killing via:
 - Nitric oxide (NO) production
 - ROI and RNI radicals

Summary:
- CD4+ Th1 cells
- IFN-γ production
Infection-induced immunity

- Healing of cutaneous leishmaniasis in humans and mice is usually self-resolving
- This is associated with long-lasting resistance to reinfection

✓ Suggests existence of anti-Leishmania memory cells
CD4^+ T cells mediate infection-induced immunity

Infection-induced Resistance

- **Primary**
- **Secondary**

![Graph showing infection-induced resistance](graph)

Adoptive Transfer of Protection

- **No Cells**
- **Naïve Cells**
- **Immune CD4^+ T Cells**

![Graph showing adoptive transfer of protection](graph)
Is there a need for a *Leishmania* vaccines?

- **Epidemiology:**
 - ✓ Over 14 million active cases
 - ✓ 2 million new cases yearly
 - ✓ 340 million people at risk
 - ✓ 88 countries, 5 continents

- Chemotherapy until recently is very limited high cost, toxicity and route of administration

- Elimination can likely only be achieved through widespread vaccination

- Vaccination could provide longterm reductions in potential reservoirs
Pubmed Search!!

• Leishmania and immunity = 2606
• Leishmania and resistance = 2127
• Leishmania and vaccine = 1649
• Leishmania and vaccination = 689
• Leishmania and effective vaccine = 392
• Human Leishmaniasis and effective vaccine = 227
• Leishmania vaccination trials = 115

Approved Effective Human *Leishmania* Vaccine = 0
Scientific Issue: Why is there no effective human vaccine despite prolific publications?
• We do not fully understand the correlates of protective immunity.

✓ Immunologic memory (development, maintenance and loss)

✓ Antigens that mediate memory T cell responses
Is Vaccination Feasible?

• Infection-induced immunity: Recovery from virulent *Leishmania* infection leads to development of strong durable immunity against virulent challenge

• Leishmanization is very effective
Leishmaniasis Vaccine Approaches

- Heat Killed parasites
 - First generation vaccines

- Live attenuated/genetically modified
 - Second generation vaccines

- Defined protein/subunit vaccines
 - Third generation vaccines

- Leishmanization
Heat-killed (ALM) vaccines

- Heat-inactivated (Autoclaved) *Leishmania* parasites
- Several doses or ‘boosters’ with different adjuvants (BCG, Alum, CpG)
- Questionable efficacy
- Easy and cheap to make (minimal technology) and very safe
- Does not require understanding of complex immunologic correlates of protective immunity
- Reports of immunotherapeutic effects in New World cutaneous leishmaniasis
Problems with ALM Vaccine

• Standardization and scale-up issues

• Undesirable immune responses

Leishmanization

• Deliberate inoculation of live (virulent) parasites to the hidden parts of the body with the aim of inducing protection from natural infection following recovery

• Very Effective

• Undesirable side effects!!!
Undesirable effects of Leishmanization

Courtesy: Dr Ali Khamispour
Rationale for Live Vaccine

• Infection-induced Immunity
 ✓ Recovery from infection leads to development of durable immunity

• Persistent parasites are important for maintaining infection-induced immunity
 ✓ Attenuated parasites persist for a long time in infected/vaccinated host
 ✓ Clearance of parasites leads to loss of protective immunity

• Leishmanization works
Two major strategies for live-attenuated vaccine:

• Virulent parasites (*Leishmanization*)

• Attenuated parasites
Attenuated Parasites

- **Gamma Irradiation**
 - Rivier et al., 1993

- **Serial *in vitro* passage with/without drugs**

- **Infection with non-pathogenic strain (*L. tarentolae*)**
 - Breton et al 2005

- **Genetically modified organisms**
 - LPG1, LPG2, LPG5A/B, DHFR-Ts, GDP-MP, GP63, etc
LPG2 KO parasites do not cause pathology despite persistence

Add back
lpg2-
WT

Lesion size (mm)

Weeks post-infection

Uzonna et al 2004
Vaccination with LPG2 KO parasites induce protection against virulent challenge

Uzonna et al 2004
Problems of live-attenuated vaccine

• **Reversion to virulence** (due to long-term persistence)

• **Contraindicated in immuno-compromised individuals**

This vaccination protocol will most likely never be approved
3rd Generation Vaccines

• Subunit vaccines with refined products (recombinant proteins)

• Several recombinant proteins or polyproteins (e.g. Leish-111F, LmSTI1, KSAC, etc) with adjuvants such as MPL

• Some have progressed into clinical trials

• One approved for dogs in South America (Leishmune)
Why 3rd Generation Vaccines Fail

• Use of \textit{in silico} models to predict \textquotedblleft protective\textquotedblright\ vaccine candidates

• Selection of candidates based primarily on those that elicit \textbf{strong primary immune response}

• Skewed and biased immunization protocols: designs favor publication; not necessarily long-term protection
 – Animal model (BALB/c mice)
 – Antigen dose
 – Type of adjuvants
 – Frequency of immunization
 – Time of challenge etc.
Objectives:

• To use \textit{in vivo} approach to identify \textit{Leishmania} antigens that induce infection-induced immunity (memory CD4$^+$ T cell responses?)

• Assess whether vaccination with these antigens will induce long-lasting protection against virulent challenge
Healing from primary *L. major* infection is associated with strong antigen-specific CD4⁺ T cell proliferation and IFN-γ production.
Premise: Identification of the antigens that induce and maintain infection-induced resistance and the corresponding T cells is critically important for development of effective vaccine and vaccination strategy against leishmaniasis.
Strategy to confirm stimulatory ability of *L. major*-infected BMDCs for CD4⁺ T cells

1. Purify CD4⁺ T cells
2. Co-culture with infected or uninfected BMDCs
3. Assess:
 1. Proliferation
 2. IFN-γ production

Flow Cytometry
L. major-infected DCs induce proliferation and IFN-γ production in CD4+ T cells from healed mice

Source of T cells

<table>
<thead>
<tr>
<th>Source of APC</th>
<th>Naïve Mice</th>
<th>Healed Mice</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uninfected DC</td>
<td>0.8 ± 0.1</td>
<td>0.7 ± 0.3</td>
</tr>
<tr>
<td>Infected DC</td>
<td>3.0 ± 1.8</td>
<td>6.3 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>0.7 ± 0.3</td>
<td>6.5 ± 1.9**</td>
</tr>
<tr>
<td></td>
<td>1.9 ± 0.4</td>
<td>24.7 ± 3.9</td>
</tr>
</tbody>
</table>
Proteomic identification of *L. major* antigenic peptides that bind to MHC II molecules

Infected BMDCs → **Lysis buffer** → **Anti-MHC II Ab** → **Protein A beads** → **Dissociate MHC/Peptide** → **Membrane cutoff: 10K** → **Lyophilization**

Programs:
- GPM
- ProteinPilot

Databases:
1. *L. major*
2. Mouse

Database Searching → **QSTAR® Elite Hybrid LC/MS/MS** → **MHC-II bound Peptides**
<table>
<thead>
<tr>
<th>Source Protein</th>
<th>accession</th>
<th>Mr</th>
<th>Log(e) in GPM</th>
<th>Sequence in GPM</th>
<th>Sequence in ProteinPilot</th>
<th>Score in PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA binding protein, putative</td>
<td>LmjF32.0750</td>
<td>25.2</td>
<td>-53.1</td>
<td>KAAPKAAAPAARPGSS; KAAPKAAAPAARPGSS; KAAPKAAAPAARPGSS; AAPKAAAPAARPGSS; AAPKAAAPAARPGSS</td>
<td>KAAPKAAAPAARPGSS; KAAPKAAAPAARPGSS; KAAPKAAAPAARPGSS; AAPKAAAPAARPGSS; AAPKAAAPAARPGSS</td>
<td>13.1</td>
</tr>
<tr>
<td>Putative uncharacterized protein</td>
<td>LmjF08.1100</td>
<td>42</td>
<td>-25.4</td>
<td>KAAEASAHSPQASQSAGDG; AAEASAHSPQASQSAGDG; AEASAHSPQASQSAGDG</td>
<td>KAAEASAHSPQASQSAGDGDR; AAEASAHSPQASQSAGDG; AEASAHSPQASQSAGDG; AEASAHSPQASQSAGDG; AEASAHSPQASQSAGDG</td>
<td>13.2</td>
</tr>
<tr>
<td>Glycosomal phosphoenolpyruvate carboxykinase, putative</td>
<td>LmjF27.1805</td>
<td>58.2</td>
<td>-21.4</td>
<td>NDAFGVMPPVARLTPEQ; DAFGVMPPVARLTPE; DAFGVMPPVARLTPEQ; DAFGVMPPVARLTPE</td>
<td>NDAFGVMPPVARLTPEQ; DAFGVMPPVARLTPE; DAFGVMPPVARLTPE</td>
<td>6.24</td>
</tr>
<tr>
<td>ATP-dependent RNA helicase, putative</td>
<td>LmjF35.3100</td>
<td>100.2</td>
<td>-13.5</td>
<td>APAPAPAAAPTPASAPVS; APAPAPAAAPTPASAPV</td>
<td>APAPAPAAAPTPASAPVS; APAPAPAAAPTPASAPV</td>
<td>4.33</td>
</tr>
<tr>
<td>Dihydrolipoyl dehydrogenase</td>
<td>LmjF32.3310</td>
<td>50.5</td>
<td>-10</td>
<td>HATHLYHDAHNFAQYG; ATHLYHDAHNFAQYG</td>
<td>HATHLYHDAHNFAQYG; IPGVYTNPEVAQVGET</td>
<td>5.25</td>
</tr>
<tr>
<td>Cytochrome c</td>
<td>LmjF16.1310</td>
<td>12.2</td>
<td>-3.5</td>
<td>RPSGKVEGFTYSKANAESG</td>
<td>RPSGKVEGFTYSKANAESG</td>
<td>2</td>
</tr>
<tr>
<td>Aconitase, putative</td>
<td>LmjF18.0510</td>
<td>97.4</td>
<td>-3.2</td>
<td>DSITTDHISPAGNIAKDSPA</td>
<td>DSITTDHISPAGNIAKDSPA</td>
<td>2.07</td>
</tr>
</tbody>
</table>
Synthetic (PEPCK\textsubscript{335-351}, P3) peptide stimulates proliferation and IFN-\(\gamma\) production by CD4\(^+\) T cells from healed mice

<table>
<thead>
<tr>
<th>Sequence</th>
<th>肽链</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>KAAPKAAPAARPASGSSN</td>
</tr>
<tr>
<td>P2</td>
<td>AAEASAHSPQASQSGDG</td>
</tr>
<tr>
<td>P3</td>
<td>NDAFGVMPVPVARLTEEQ</td>
</tr>
<tr>
<td>P4</td>
<td>APAPAPAAAAPTPASAPVS</td>
</tr>
</tbody>
</table>

- **PEPCK**: phosphoenolpyruvate carboxykinase
- Plays an essential role in glyconeogenesis

Sci Transl Med. 2015 Oct 21;7(310)
Expansion, contraction and maintenance of PEPCK-specific CD4+ T cells in *L. major*-infected mice

Sci Transl Med. 2015 Oct 21;7(310)
PEPCK-specific CD4+ T cells are polyfunctional effector cytokine producers

Sci Transl Med. 2015 Oct 21;7(310)
PEPCK-specific CD4$^+$ T cells Protect naïve mice against *L. major* challenge

![Diagram](image)

- **a**
 - Pre-sort
 - Post-sort

- **b**
 - Parasite burden (log$_{10}$)
 - CD4$^+$Tet$^+$ (2×104)
 - CD4$^+$Tet$^-$ (2×105)
 - CD4$^+$Tet$^-$ (4×106)
 - Naive CD4$^+$ (4×106)

Sci Transl Med. 2015 Oct 21;7(310)

38
Phosphoenolpyruvate carboxykinase (PEPCK) is expressed by promastigotes and amastigotes.

a

<table>
<thead>
<tr>
<th>100 kD</th>
<th>65 kD</th>
<th>50 kD</th>
<th>40 kD</th>
<th>30 kD</th>
<th>25 kD</th>
<th>20 kD</th>
</tr>
</thead>
</table>

b

- Promastigote
- Amastigote
- 10ng rPEPCK
- 50ng rPEPCK

c

- DAPI
- PEPCK
- DAPI/PEPCK
- White light

Promastigote

Amastigote
PEPCK elicits strong T cell response in *L. major*-infected healed human patients

a

Index of stimulation

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>rPEPCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b

IFN-γ (ng/ml)

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>rPEPCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c

Grz B (ng/ml)

<table>
<thead>
<tr>
<th></th>
<th>SLA</th>
<th>rPEPCK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infected</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Does Vaccination with PEPCK Protect Against Virulent Challenge?

DNA Vaccine:
1) PBS
2) CpG control
3) DNA + CpG
4) Vector + CpG

Protein Vaccine:
1) PBS
2) CpG control
3) Protein + CpG
4) Protein only

Peptide Vaccine:
1) PBS
2) CpG control
3) Peptide + CpG

Challenge:
- L. major
- L. donovani

Immune response
Vaccination with the synthetic peptides and DNA vaccine expressing PEPCK induces protection against virulent *L. major* challenge.
Vaccination with the recombinant PEPCK induces protection against virulent *L. major* challenge. (6 weeks)
DNA Vaccine Confers Long-term (12 Weeks) Protection

A C57BL/6

- PBS
- CpG
- Vector
- DNA vaccine

Lesion size (mm) vs. Weeks Post-challenge

B Balb/c

- PBS
- CpG
- Vector
- DNA vaccine

Lesion size (mm) vs. Weeks Post-challenge

C

Parasite burden (log_{10}) vs. PBS, CpG, Vector, DNA vaccine

D

Parasite burden (log_{10}) vs. PBS, CpG, Vector, DNA vaccine
PEPCK Vaccine Cross-Protects Against Experimental Visceral Leishmaniasis

LIVER

<table>
<thead>
<tr>
<th>Group</th>
<th>Parasite burden (10^7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>15</td>
</tr>
<tr>
<td>Vector</td>
<td>10</td>
</tr>
<tr>
<td>DNA vaccine</td>
<td>0</td>
</tr>
</tbody>
</table>

SPLEEN

<table>
<thead>
<tr>
<th>Group</th>
<th>Parasite burden (10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBS</td>
<td>2</td>
</tr>
<tr>
<td>Vector</td>
<td>2.5</td>
</tr>
<tr>
<td>DNA vaccine</td>
<td>1</td>
</tr>
</tbody>
</table>
Summary:

Naturally processed *Leishmania major* peptides were eluted and identified from MHC II molecules on *L. major*-infected BMDCs.

PEPCK-specific T cells are immunodominant, polyfunctional cytokine producers and protect against *L. major*.

Vaccination with PEPCK peptides, PEPCK DNA or rPEPCK induces cross-protection against *Leishmania* challenges.

- *L. major, L. donovani, L. infantum* (preliminary evidence)
Implications for Vaccine Designs and Vaccination Strategies

• Conventional methods of immunogen prediction may be misleading
 ✓ *In silico* predictions, early versus memory immune responses

• Approach aimed at identifying antigens that are really relevant
 ✓ *Reverse immunology*

• May be relevant in other parasitic infections where concomitant immunity is critical for resistance
 ✓ *Malaria, toxoplasmosis*
Next Step:

• Vaccination studies in NHP, Dogs
• Clinical Trials?
• Collaborators and funding wanted!!!
Acknowledgements

Project Leader:
Dr. Zhirong Mou

Uzonna Lab members
Jintao Li
Forough Khadem

Collaborators:
Manitoba centre for Proteomics and System Biology
Dr. John Wilkins
Peyman Ezzati

Pasteur Institute of Tunis, Tunisia
Thouraya Bousoffara
Hechmi Louzir

University of Toyama, Japan
Hiroyuki Kishi
Hiroshi Hamana

NIH Tetrramer Core Facility
Pasteur Institute of Iran, Iran
Sima Rafati

Sichuan University, China
Jianping Chen

Third Military Medical University, China
Chuanmin Hu; Weijing Yi; Shufeng Wang

Flow cytometry Core Facility
Christine Zhang

Funding:

University of Iowa
Christine Petersen

McGill University
Momar Ndao

Cancer Care Manitoba
Ludger Klewes